
An asynchronous algorithm for massive pseudo-spectral simulations of
turbulence on Summit

K. Ravikumar1, D. Appelhans2, P.K. Yeung1, M.P. Clay1

1Georgia Institute of Technology, 2IBM Research

Fluid Turbulence: Overview and Challenges

I Disorderly fluctuations in time and 3D space, over a wide
range of scales (which increases with the Reynolds no.)

I A search for scale similarity, with energy cascade from
large scales to small scales (via intermediate scales)

I Some fluctuations can be extreme (intermittent), requiring
better resolution than commonly thought/practiced [1]

I Agent of efficient mixing and dispersion, may be coupled
to other phenomena (buoyancy, chemical reaction, etc)

I Our emphasis: fundamental understanding in simplified
geometries, yet of general relevance to applications

Figure: Vortex filaments in 81923 direct numerical simulation

Governing equations and numerical methods

I Navier Stokes, for conservation of mass and momentum:

∇·u = 0 (1)
∂u/∂t + u·∇u = −∇(p/ρ) + ν∇2u + f (2)

I Fourier pseudo-spectral methods using FFT for 3D
domain with periodic boundary conditions

I Grid spacing should be comparable to, preferably smaller
than smallest scales (Kolmogorov)

I 2nd or 4th order Runge-Kutta in time (wavenumber space)
I Time step based on Courant number for numerical stability

Major Algorithmic Elements

I Domain decomposition: can be 1D (slabs) or 2D (pencils)
I One FFT per direction with data local to each MPI process
I Transpose using alltoall communication (or variants)
I Pack and unpack in local memory before/after alltoall

Target on Summit: 163843 or higher

I Fat nodes offer large memory: 1D decomposition
I Fast CPU-GPU data transfer through NVLINK
I Spectrum-MPI for communication: 1-sided is best
I Fine-grained overlapping among CPU/GPU computations,

NVLINK transfers and non-blocking alltoalls

IBM XL compiler, CUDA Fortran[2] for host-device data
copies, CUDAFFT on GPUs
I Detailed profiling using NVPROF
I Measurements of network bandwidth
I Small reproducers helped diagnose bugs in system

Domain Decomposition & Algorithm

x̂

ŷ
ẑ

1D Domain
Decomposition

xy Slab
xz Slab

A2A

mz

my

Synchronous Algorithm
H2D : (nv = 3)

FFT : κ → x in ŷ (nv = 3)

MPI : Pack, A2A, Unpack (nv = 3)

FFT : κ → x in x̂ , ẑ (nv = 3)

Non-linear products (nv = 3 → 5)

FFT : x → κ in x̂ , ẑ (nv = 5)

Derivatives wrt x̂ , ẑ (nv = 5 → 4)

MPI : Pack, A2A, Unpack (nv = 4)

FFT : x → κ in ŷ (nv = 4)

Convective terms (nv = 4 → 3)

Update velocity field (nv = 3)

D2H : (nv = 3)

Limitations of synchronous algorithm

I Problem size restricted by available GPU
memory

I Computations and NVLINK cost add to runtime

Asynchronous Algorithm
nplanes :
1 → mz

H2D FFT : κ → x in ŷ D2H
Pack, A2A,

Unpack

nplanes :
1 → my

H2D FFT : κ → x in x̂ , ẑ
Non-linear products
FFT : x → κ in x̂ , ẑ
Derivatives wrt x̂ , ẑ

D2H
Pack, A2A,

Unpack

nplanes :
1 → mz

H2D FFT : x → κ in ŷ
Convective terms

Update velocity field

D2H

Advantages of asynchronous algorithm

I Run larger problem using CPU memory
I Overlapping Compute and NVLINK under MPI lowers cost
I Network, being the bottleneck, is continuously used

(κ→ x)
(x → κ)

Figure: Nvprof timeline of asynchronous code for one Runge-Kutta substep. Alltoall (silver) overlapped with GPU computations and NVLINK (shown in
other colors). Further operations have to wait on previous alltoall to complete making it the bottleneck.

Figure: Overlapping GPU compute and NVLINK data transfers in asynchronous code. First row: Transfer stream (NVLINK), Second row: Compute
stream. GPU is continuously used for computations. Data transfers are performed as soon as computations on previous plane are completed

Implementation using CUDA Fortran

I Compute and Transfer streams created
I Non-blocking copy between host and device using

cudaMemCpyAsync in Transfer stream
I cudaFFT and other computes queued in Compute stream
I Synchronization between streams enforced using

cudaEventRecord and cudaStreamWaitEvent

Proposed use of OpenMP 4.5

I use device ptr clause to call cudaFFT functions
I DEPEND and NOWAIT clauses to mimic CUDA streams,

events and asynchronous execution

Scaling and Runtime Performance

10

100

1 10 100

T
im

e
p
er

st
ep

(s
)

Number of nodes

Figure: Scaling of GPU (blue circle) and CPU (red square) code on
Summit. Weak scaling of CPU and GPU code for the 64-node problem is
66.35% and 50.23% respectively.

Nodes Problem Size A2A (% total time) Speedup
1 15363 9.31 (78.16%) 6.11
8 30723 12.40 (81.87%) 5.42
64 61443 20.71 (87.40%) 4.63

Table: Percentage of total time spent on alltoall by the GPU code and
speedup of the GPU code compared to the CPU code. Recent
modifications to GPU code give speedup > 5X for 1 node problem

Network performance on Summit

I Max achieved BW (R+W), 20GB/s for larger problems
(Theoretical max 46GB/s)

I A2A using one-sided MPI tested (gives higher BW)
I In conversation with IBM spectrumMPI team
I Plan to implement hierarchical A2A using non-blocking

GATHER and SCATTER

Conclusions & Future Work
I Process parts of plane instead of full plane at a time
I Port cudaFortran code to OpenMP 4.5
I One-sided MPI for better network performance

Acknowledgments & References
This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility
supported under Contract DE-AC05-00OR22725. We are grateful for
the dedicated assistance from O. Hernandez, R. Budiardja and other
staff members from OLCF and IBM.

[1] P. K. Yeung, X. M. Zhai, and K. R. Sreenivasan PNAS, vol. 112,
pp. 12633–12638, 2015.

[2] G. Ruetsch and M. Fatica, CUDA Fortran for Scientists and
Engineers Elsevier, 2013.

